abracudabra.conversion.carray#

Convert to numpy or cupy arrays.

Functions#

_torch_to_array(→ abracudabra.annotations.Array)

Convert a torch tensor to a numpy array.

_array_to_array(→ abracudabra.annotations.Array)

Convert a numpy/cupy array to a numpy/cupy array.

_pandas_frame_to_array(→ abracudabra.annotations.Array)

_cudf_frame_to_array(→ abracudabra.annotations.Array)

_any_to_array(→ abracudabra.annotations.Array)

to_array(→ abracudabra.annotations.Array)

Convert an array, series, or dataframe to a numpy array.

Module Contents#

abracudabra.conversion.carray._torch_to_array(tensor: torch.Tensor, /, device: str | abracudabra.device.base.Device | None = None) abracudabra.annotations.Array[source]#

Convert a torch tensor to a numpy array.

abracudabra.conversion.carray._array_to_array(array: abracudabra.annotations.Array, /, device: str | abracudabra.device.base.Device | None = None) abracudabra.annotations.Array[source]#

Convert a numpy/cupy array to a numpy/cupy array.

The array is converted to the desired device if specified.

abracudabra.conversion.carray._pandas_frame_to_array(frame: pandas.Index | pandas.Series[Any] | pandas.DataFrame, /, device: str | abracudabra.device.base.Device | None = None) abracudabra.annotations.Array[source]#
abracudabra.conversion.carray._cudf_frame_to_array(frame: cudf.Index | cudf.Series | cudf.DataFrame, /, device: str | abracudabra.device.base.Device | None = None) abracudabra.annotations.Array[source]#
abracudabra.conversion.carray._any_to_array(sequence: object, /, device: str | abracudabra.device.base.Device | None) abracudabra.annotations.Array[source]#
abracudabra.conversion.carray.to_array(sequence: abracudabra.annotations.Array | abracudabra.annotations.Series | abracudabra.annotations.DataFrame | torch.Tensor, /, device: str | abracudabra.device.base.Device | None = None, *, strict: bool = False) abracudabra.annotations.Array[source]#

Convert an array, series, or dataframe to a numpy array.

Parameters:
  • sequence – The sequence to convert.

  • device – The device to convert the sequence to. If None, the sequence stays on the same device.

  • strict – Whether to raise an error if the sequence is not a valid type. A numpy/cupy array, pandas/cudf series or dataframe, or torch tensor are valid types. If False, the sequence is converted to a numpy/cupy array if possible, but it might raise an error if the conversion is not possible.

Returns:

A numpy/cupy array.