abracudabra.device.library#
Library import functions for device types.
This module provides functions to import the appropriate library based on the device type. Since the NumPy/CuPy and Pandas/cuDF libraries share similar interfaces, being able to switch between them based on the device type is useful.
Functions#
|
Get the numpy or cupy library based on the device type. |
|
Get the pandas or cudf library based on the device type. |
Module Contents#
- abracudabra.device.library.get_np_or_cp(device_type=None)[source]#
Get the numpy or cupy library based on the device type.
if
device_type
is"cpu"
, return the numpy libraryif
device_type
is"cuda"
, return the cupy library
If
device_type
is not specified, return the numpy library (default).Examples
>>> device_type = "cuda" # in some configuration for example >>> np_or_cp = get_np_or_cp(device_type) >>> np_or_cp.random.choice([1, 2, 3], size=1) # returns a cupy array array([3])
- Parameters:
device_type (abracudabra.device.base.DeviceType | None)
- Return type:
types.ModuleType
- abracudabra.device.library.get_pd_or_cudf(device_type=None)[source]#
Get the pandas or cudf library based on the device type.
if
device_type
is"cpu"
, return the pandas libraryif
device_type
is"cuda"
, return the cudf library
If
device_type
is not specified, return the pandas library (default).Examples
>>> pd_or_cudf = get_pd_or_cudf("cpu") >>> pd_or_cudf.Series([1, 2, 3]) # returns a pandas series 0 1 1 2 2 3 dtype: int64
- Parameters:
device_type (abracudabra.device.base.DeviceType | None)
- Return type:
types.ModuleType